Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton.
نویسندگان
چکیده
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, T(imm)) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased T(imm), testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones' sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold-warm gradient.
منابع مشابه
Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential
We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respe...
متن کاملCoping with Temperature at the Warm Edge – Patterns of Thermal Adaptation in the Microbial Eukaryote Paramecium caudatum
BACKGROUND Ectothermic organisms are thought to be severely affected by global warming since their physiological performance is directly dependent on temperature. Latitudinal and temporal variations in mean temperatures force ectotherms to adapt to these complex environmental conditions. Studies investigating current patterns of thermal adaptation among populations of different latitudes allow ...
متن کاملGene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback.
Phenotypic plasticity is predicted to facilitate individual survival and/or evolve in response to novel environments. Plasticity that facilitates survival should both permit colonization and act as a buffer against further evolution, with contemporary and derived forms predicted to be similarly plastic for a suite of traits. On the other hand, given the importance of plasticity in maintaining i...
متن کاملAdaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression.
Debate surrounding the integration of phenotypic plasticity within the neo-Darwinian paradigm has recently intensified, but is largely dominated by conceptual abstractions. Advances in our capacities to identify candidate genes, and quantify their levels of expression, now facilitate the study of natural variation in inherently plastic traits, and may lead to a more concrete understanding of pl...
متن کاملPhenotypic plasticity facilitates recurrent rapid adaptation to introduced predators.
A central role for phenotypic plasticity in adaptive evolution is often posited yet lacks empirical support. Selection for the stable production of an induced phenotype is hypothesized to modify the regulation of preexisting developmental pathways, producing rapid adaptive change. We examined the role of plasticity in rapid adaptation of the zooplankton Daphnia melanica to novel fish predators....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 281 1776 شماره
صفحات -
تاریخ انتشار 2014